-

衝撃モデルによる倒立剛体の転倒限界

西原主計* 横山孝之**

Overturn Thresholds for The Inverted Rigid Body to Shock Models

Kazue NISHIHARA*, Takayuki YOKOYAMA**

To maintain the safety of products, it is important to understand the circumstance in which the rigid body turn over, and with this knowledge, to design the container hard to upset even in the shock environment. In this paper, at first using some typical shock models, computer simulations were achieved to give overturn threshold accelerations on the inverted rigid body, getting two simple equations for the threshold accelerations. The two equations were characterized in the case of the time integral area of shock wave, that is, case of the area ≥ 1 and case of the area < 1, both of which gave good approximations to the original differential equation in a wider range of non-dimensional frequency Ω .

Secondly, the shock experiment is carried out for a steelball overturning appratus with various cushioning pads. It was evident that the tendency of the experimental threshold accelerations coincided with that of above equations. So overturning thresholds will be presumed widely if the duration time and its integral area of actural shock are partly assumed.

Keywords: Overturn of rigid body, Overturn of container, Overturn threshold, Turn over, Fall, Upset, Shock model

製品の安全性を確保するためには、物体の転倒はどういう場合に起るかを知ることと、その知見により 転倒しにくい容器を設計していくことが重要である。

そこで本研究では、まず、各種衝撃波形のモデルを用い、剛体の転倒限界を与える計算機シミュレーションを行い、二つの簡便な転倒限界式を導いた。その簡易転倒限界式は、衝撃面積≥1又は<1の場合に分けられ、無次元化振動数Ωの広範囲にわたって、元の転倒微分方程式に対しよい近似を与えた。

次に、網球の転動装置と各種緩衝材による衝撃実験を行った。その実験による衝撃転倒限界加速度の特 性は、上に求めた簡易転倒限界式の特性傾向に合致した。よって、衝撃持続時間・衝撃面積が幾つか推測で きれば、上の簡易転倒限界式から転倒限界が推定できることが分かった。

キーワード:容器の転倒、倒立剛体、転動、倒れ、衝撃転倒

神奈川工科大学(〒243-02 神奈川県厚木市下荻野1030): Kanagawa Institute of Technology, 1030, Shimo-Ogino, Atsugi – shi, Kanagawa, 243-02 **二国機械工業(株)(〒213 神奈川県川崎市高津区久地843-5): Nikuni-Kikai Kogyo Co., 843-5, Kuji, Takatsu-ku, Kawasaki-shi, Kanagawa, 213

1. まえがき

包装物輸送において、これまで輸送振動、 落下衝撃、回転衝撃など、主として大振動・大 衝撃に関する動力学的研究がなされ、緩衝包 装技術は進展してきた。しかし、輸送過程・ 消費者環境において、個々の製品の倒れ、躍 り・衝突などの動力学的研究は地味で数が少 ないように思われる。

製品の中には瓶類、缶類のごとく脊の高い ものがあり、また、積み重ねたとき倒れ易す くなるものがある。加わる振動・衝撃が小さ くても製品は躍り、他と衝突し、転倒する場 合が見受けられる。転倒自体が直ちに製品の 品質を損うものではないが、容器を傷付けた り、場合によっては破損し安全性にかかわる ことが予想される。したがって、流通過程に おいても消費者環境においても、製品の安全 性を最低限確保するためには、少なくとも物 体の転倒はどういう場合に起るかを知ること と、その知見により転倒しにくい容器を設計 していくことが重要である。

本研究では、大局的な転倒特性を得るた め、まず製品及び床を剛体と考え、先に著者 らが導いた転倒近似方程式^{1,21}のうちすべり・ 躍りのない状態式に対し、計算機シミュレー ションにより、各種衝撃波形のモデルを印加 して物体の転倒限界を調べ、簡便な転倒限界 式を導びいた。併せて各種緩衡材による鋼球 の衝撃転動実験と比較し検討した。

物体の転倒問題は、包装輸送面では今後の 容器設計、陳列・積み重ねなど、家庭では収 納、取り扱いなど、また安全面ではプロパン ガスボンベ、それらの転倒検知センサなど^{3) *)} 多くの分野にまたがる基本問題である。

2. 運動方程式

水平方向の加速度を受けるFig. 1のような 転倒系を考える。同図の(a)と(b)は同一 方程式系であるが、以下Fig. 1 (a) すなわち、 倒立剛体の質量をm、重心高さをh、上面幅を 2a、底面幅を2dとし、水平方向の加速度 uに より転倒する系について調べる。重心〇から 底面端Pまでの距離をr、重心を通る鉛直軸と OPとの傾き角を θ 、その静止状態での傾き角 $\epsilon \theta_{\infty} 重心回りの回転角を \alpha$ (すべり回転成 分を含む)、重心の相対速度をv、P点での剛 体のすべり速度をv.、抗力をR、摩擦力をF、 動摩擦係数をµとし、図の矢印の方向を正に とる。O点、P点での慣性モーメントをそれ ぞれL、Lとする。P点において剛体の傾きが 静止状態から増加する方向にのをとる。重心 Oが床点Pと垂直になるときを転倒限界とす る。

運動方程式を簡単化するため次の仮定を設 ける。

(1) P点で剛体の飛び跳ねはない

(2) 運動は左右半面で対称である

(3) θ 、 θ 。 θ などの2乗オーダは省略できる

(4) 摩擦は乾性摩擦則に従い、かつμ <<
 θ。とする

(5) 端点Pでの曲率半径は考えない

ここで、すべり速度は v_s = v - r a であり、 v_s ≠ 0 で動摩擦、v_s = 0 で静摩擦である。 $\theta = (\pi/2) - \beta - \phi$ 、tan $\beta = h/d$ 、r = $\sqrt{h^2 + d^2}$ である。また、 ϕ 、 θ 、 θ_{\circ} 、 μ は 小さいとして、転倒方程式は換算時間領域 τ

において以下のように表される²。

$$\Omega^{2} \xi'' - \xi \pm \mathbf{b} = \mathbf{p} \, \phi \quad (\tau), \\ (\xi \ge 0 \, \overline{c} +, \, \xi < 0 \, \overline{c} -), \\ \xi'_{+} = \mathbf{e} \, \xi'_{-} \end{cases}$$
(1)

ただし、添字の正負は θ_0 に到達した直後及 び直前の値を表す。eは弾性変形、熱、音伝播 等による減衰を含んだ変軸速度係数で定義さ れ⁵⁾、回転軸が他端に移ることによる速度変 化が主体をなす。時間尺度を $\tau = \nu t$ 、 $\epsilon \tau$ に関する微分、 $\omega_0^2 = g/r$ 、 $\Omega = \nu / \omega_0$ と置 いて、 $\xi = \phi / \theta_0$ 、初期荷重定数b=1- μ $/ \theta_0$ 、p = u_0 / g θ_0 、u_0を加速度振幅、 ϕ (τ)を最大1及び持続時間 π なる外力関数、 例えば、半正弦波では ν を加振振動数として、 $\phi(\tau) = \sin \tau$ である。変位の最大 | ξ | m = bのときを転倒限界とする。システムは振 動数比Ωと転倒感度 p/bで特徴付けられる。 なお、式展開は [付録]を参照。

3.実験

Fig. 1 (b) において、鋼球m = 28.1g、そ の半径r = 0.951cm、アルミ台の溝半径d = 0.34cm、摩擦係数(鉄・アルミ) μ = 0.001⁶ とし、静止状態の傾き角 θ_0 = 0.365rad、b = 0.997、 ω_0 = 32.1 である。この装置と加速度 ピックアップを台車に載せ、衝突面に各種形 状・厚さの発泡ウレタンフォーム(以下スポ ンジと略す)、発泡スチロール、エアキャッ プ、ゴムシート、丸めたチリ紙及びそれらの 組み合わせによる緩衝材を置き、台車をゴム 紐で引っ張り衝突させる。鋼球の転がり上が り点を見ながら、加速度波形とそのピーク値 をオシロスコープで読み取り Fig. 2を得た。

Fig. 2 Experiment on shock overturning

Fig. 2から、衝撃加速度G (Gは重力加速度 を1単位とする) は、実時間領域での衝撃持続 時間Tが小さいときは緩衝材の材質、形状に より1G程度ばらつくが、Tが大きくなるにつ れて緩衝材に依存せず、ばらつきは小さくな っている。全体の傾向として、転倒限界が一 つの単調な曲線の回りにばらついているよう に見られるし、また、剛体の転倒限界が衝撃 持続時間又はその時間積分など、材質による 衝撃関数に依存しているようにも見られる。

材質的にはaはスポンジをちぎったものか 又はそれとエアキャップの重ね合わせ、bは スポンジ単体又はチリ紙を丸めたもの、cは エアキャップ単体、又は発泡スチロールとス ポンジの重ね合わせ、dはゴムシート又はそ

(a) shock wave 0.5G/div, 20ms/div (exp. No.1) symbol▼ : start and stop of impact

(b) apparatus

- 1: polyurethane foam cushion
- 2: steelball and accelerometer in the box
- 3 : trigger equipment
- 4 : guide

Fig. 3 Shock wave and apparatus

れと発泡スチロールの重ね合わせ、eは発泡 スチロール単体などである。

なお、Fig. 3は衝撃値2.6G、持続時間T = 54msのときの加速度波形と緩衝材である。 その加速度波形は正弦波n乗型のように見え るが、実際に衝突している時間はこれより2 倍程度長い。

4. 数値シミュレーション

ここでは、剛体の転倒限界を数式化するた

め、第2章に得られているころがり・転倒方程 式"を整備し、設計などに応用するため、よ り見通しのよい簡易転倒限界式を導くことと する。まず、換算時間領域の式(1)におい て、倒れ限界は、

$$\boldsymbol{\xi} = \mathbf{b}, \quad \boldsymbol{\xi}' = 0 \qquad \boldsymbol{\tau} = \boldsymbol{\tau}_{\mathbf{m}} \tag{2}$$

ただし、実時間領域のTは換算時間領域にお いて $\tau_m = \pi$ である。このときの式(1)を以 下のような範囲に分ける。すなわち、

- (1) $\Omega < < 1 \text{ obs}$
- 式(1) は-ξ±b≒pφ(τ) となりξ= b のオーダであるから、pは0に近づく。 (2) Ω<1でΩξ″≒ξの範囲:
 - このときはp≒bとなる。数値計算でもこのような範囲がある。
- (3) Ωが1の近傍ないしそれ以上で十分大きい範囲:
 - 式(1)を直接積分し、

$$\Omega^{2} \xi' \Big|_{0}^{rm} + \int_{0}^{rm} (-\xi \pm b) d\tau$$
$$= p \int_{0}^{rm} \psi (\tau) d\tau = ps \qquad (3)$$

ここに、式(3)の右辺の積分値、すなわちp の係数を衝撃面積 s と定義する。左辺第1項 は零、したがって、左辺第2項は倒れ限界にお いて Ω とsの関数C(Ω , s)となっていると考 えられる。そこで、

$$ps = C (\Omega, s)$$
 (4)

と置く。上の範囲(1)、(2)は特定できない ので、(3)によって式(4)に従う簡易転倒限 界式を求める。

Fig. 4に今回シミュレーションに用いた衝 撃波形のモデル、Table 1にそれらの衝撃面

Fig. 4 Models of normalized shock acceleration

積sを示す。まず、その衝撃 $\phi(\tau)$ を式(1) に印加し、Runge – Kutta – Gill法で計算し た結果がFig. 5である。図中の番号はTable 1に対応している。なお、番号31、32、33の 特性はそれぞれ番号5、6、7に近いので作図 を省略した。

次に、Fig. 5からps、s、 Ω の関係を取り出 したところFig. 6となった。Fig. 6から大ま かに、s<1では (Ω /s)の因子が支配的であ り、s \ge 1ではその因子に (s/ Ω)の因子が加 算されていることを見出した。そこで、s<1 に対しては第1近似

Fig. 5 Overturn threshold accelerations calculated, simulated and experimented

solid line : calculated from eq.(1) • : experimented and ∇ : simulated by eq.s (5) and (6)

Table 1 Normalized shock model

No.	S	τ1	τ3	q	n	comments
1	0.1728	$5\pi/11$	$6\pi/11$	0.01		
2	0.2042	4π/9	$5\pi/9$	0.01		
3	0.2536	$3\pi/7$	4π/7	0.01		
4	0.3424	$2\pi/5$	3π/5	0.01		
5	0.5798	$\pi/3$	2π/3	0.01		
6	0.6544	$\pi/3$	$2\pi/3$	0.05		
7	1.047	π/3	2π/3	0.2		
8	1.178	0	π		4	sine ⁴
9	1.571	0	π		2	sine²
10	2.0	0	π		1	sine
11	3.142	0	π			rectangular
31	0.4791	$3\pi/7$	$5\pi/7$	0.01		similar to 5
32	0.5610	3π/7	$6\pi/7$	0.01		similar to 6
33	0.7854	3π/7	7π/7	0.01		similar to 7

$$p = a_0 + a_1 \frac{\Omega}{s}$$
(5)

s≧1に対しては第2近似

$$p = a_0 + a_1 \frac{\Omega}{s} + a_2 \frac{s}{\Omega}$$
 (6)

と置き、番号(1~6)の組、(5~11)の組に 分けて、それぞれの sと 1 ≤ Ω ≤ 10での p値 をランダムに与え、カーブフィットを行った ところ、係数a,がTable 2のように得られた。 それらの近似式から p を再計算し、Fig. 5 に プロットした(▽印)。

なお、簡略化の意味から、現在のところこの二つの簡易式を与えるのが適当である。それらを統合するためには、因子を増やさなければならない。

Table 2 Coefficients of approximated equations (5) and (6)

annrox 0.675 1.02 0.0	coeffs. a ₀ a ₁ a t approx. 0.652 1.10 - d approx. 0.675 1.02 0.0
m 0675 102 00	5. a ₀ a ₁ a rox. 0.652 1.10 -

5. 赤 꼟

加速度pが小さいため、図の左下部分にプロ 長くなり、衝撃面積sが大きく、かつ転倒衝撃 ットされる。 なった。柔らかい緩衡材は衝撃持続時間Tが 線によって緩衝材の柔硬が推定できるように 程度それらの違いが読み取れ、 違いが特定できないが、Fig. 5 からは、 値Fig. 2だけでは緩衝材の材質や衝撃波形の 右上へとつながっているように見える。実験 特性に沿って、 線の番号1、2、3のグループの範囲内にある 値全体の傾向としては、ツミュワーツョン曲 ことが分かる。 ა て計算し、Fig. 5 に再掲した (●印)。 Fig. 2の実験値を式(1)下の無次元化によ 詳しく見ると番号1、 プロットがそれぞれ左下から それぞれの曲 \sim ч6 С 実験 30

Fig. 3から本研究で用いた衝撃持続時間T = τ "/ ν を正しく読み取るには熟練を要す る。しかし、Tの読み取り誤差が大きいとし ても、それから計算されるΩと測定されたp の組は Fig. 5のどれかのシミュレーション曲 線に乗るため、測定していない点での転倒衝 撃値は類推可能である。

簡易化した転倒方程式から、計算機シミュレーションにより、その転倒方程式にフィットしつつも、さらに簡易化した二つの転倒限界式を導いた。衝撃面積が計算できる場合には、この近似式により、剛体の転倒限界を知るいとが可能、かつ、安全率を見込んだ設計が可能であると思われる。

6. 辞 肇

衝撃転倒限界を考慮した製品・包装物の設

計に資するため、衝撃に対し剛体の転倒限界 を与えるシミュレーションを行い、かつ、数 種の緩衝材による鋼球の衝撃転動実験を行 い、以下の結論を得た。

(1)転倒方程式を数値解析し、衝撃面積≥ 1及び<1の場合に分けて簡易転倒限界式 を導いた。それらは無次元化振動数Ωの広 範囲にわたって、元の微分方程式に対しよ い近似を与える。

(2) 鋼球の転動装置と各種緩衝材による衝撃実験において、その衝撃転倒限界値の特性は、シミュレーションによる簡易転倒限 界式の特性傾向に合致した。よって、衝撃 持続時間・衝撃面積が分かれば、簡易転倒 限界式から転倒限界が推定できる。

おわりに

本論では剛体の転倒限界の内すべり・躍り のない場合に限定したが、ほかにも、容器底 形状、積み重ね、内容物の揺れ、台の材質な ど転倒に関係する因子は多いと思われる。今 後の研究の発展が期待される。

[付録]

$$\vec{mv} = -m\vec{\theta} = -m\vec{u}\cos\theta - mg\sin\theta + F$$

$$m\frac{v^2}{r} = mr^2\dot{\theta} = -m\vec{u}\sin\theta + mg\cos\theta - R$$
(a1)

重心〇回りの回転運動方程式は、

$$I_0 \alpha = -Fr \tag{a2}$$

衝突による減衰力は方程式に入れないで次 の条件で与える。

$$\dot{\theta}_{+} = \mathbf{e} \,\dot{\theta}_{-} \qquad \text{at} \,\theta = \theta_{0} \qquad (a3)$$

添字の正負はθ。に到達した直後及び直前 の値を表す。仮定の(4)、(3)により式 (a1)は

$$mr \dot{\phi} = -mu (\cos \theta + \mu \sin \theta) -mg (\sin \theta - \mu \cos \theta)$$
(a4)

ここにゆと日の関係は

 $|\phi + \theta| = \theta_0, \quad \phi \theta > 0 \quad (a5)$

であるから、 θ を ϕ に置き換え、 θ >0で

$$\left. \begin{array}{l} \sin \theta = \sin \left(\theta_{0} - \phi - \mu \right) \\ + \mu \cos \left(\theta_{0} - \phi - \mu \right) \\ \cos \theta = \cos \left(\theta_{0} - \phi - \mu \right) \\ - \mu \sin \left(\theta_{0} - \phi - \mu \right) \end{array} \right\} \quad (a6)$$

の近似を与える。本文のパラメータにより 次の近似方程式

$$\Omega^{2} \phi' + \sin \left(\theta_{0} - \phi - \mu\right) = -\frac{u'}{\varphi} \cos \left(\theta_{0} - \phi - \mu\right) \qquad (a7)$$

となる。さらに本文の無次元化と、仮定 (2)を用いて式(1)を得る。

<引用文献>

- 1) 西原主計、精密機械、44(2),185(1978)
- 2)西原主計、奥田敏、和田充雄、渡辺健朗、製品 科学研究所報告、第87号、51(1979)
- 3)西原主計、渡辺健朗、奥田飲、和田充雄、製品 科学研究所報告、第80号、1(1977)
- 4) 西原主計、精密工学会誌、59 (2), 323 (1993)
- 5) 木村隼、飯田汲事、地震、6 (3), 125 (1934)
- 6) 日本機械学会、"機械工学便覧"、第5章、p.3-35 (1968)

(原稿受付1994年3月16日) (密查受理1994年8月10日)