用 語

機械学習(Machine Learning)、深層学習(Deep Learning)

機械学習(ML: Machine Learning)は、人工 知能(AI: Artificial Intelligence)を支える情報 処理技術の1つです。大量のデータから、コ ンピュータが自動で「学習」し、そのデータに 含まれるルールやパターンを発見する方法で す。

機械学習の種類

機械学習の種類としては、(1)教師あり学習、 (2)教師なし学習、(3)強化学習の3種類に大別 されます。

(1)教師あり学習(Supervised learning)

既知の学習用データセットと、そのデータ に対する既知の出力によりモデルの学習を行 い、新たな入力データに対する出力応答とし てモデルが合理的な結果を推計します。「ロジ スティック回帰 | 「k 近傍法 | 「サポートベクタ ーマシン」「ニューラルネットワーク」などが あります。

(2)教師なし学習(Unsupervised learning)

学習データに正解を与えない状態で学習さ せる学習手法です。各データ間の近さや類似 度などを計算して、データをグループに分け たり、データ間のつながりを推計します。「ク ラスタリング」「次元削減」が使われることが 多いです。

(3)強化学習(Reinforcement Learning)

最初からデータがあるわけではなく、コン ピュータエージェントが試行錯誤しながら精 度を高めていく学習方法。自ら試行錯誤しな がら学んでいくという点が大きな特徴です。 環境はマルコフ決定過程として定式化され 「動的計画法(dynamic programming)」「モン テカルロ法(Monte Carlo methods)」「TD 学習 (temporal difference learning)」「Q 学習(Qlearning)」などがあります。

深層学習 (Deep Learning) は、人の神経細胞 の仕組みを模倣した多層構造のニューラルネ ットワークを用いて学習する機械学習手法の

1つです。ここでは、大量のデータを用いて、 与えられたデータのクラス分類や回帰を実現 するネットワークを学習します。

ILSVRC: ImageNet Large Scale Visual Recognition Challenge という画像認識の精度 を競う世界的な競技会があります。2010年頃 までは、世界中の研究者たちは毎年1%程度 の画像認識の精度向上を競いあっていました。 しかし 2012 年に開催された ILSVRC でカナ ダトロント大学のジェフリー・ヒントン教授 らのグループがディープラーニングを用いた 新しい手法により、一気に 10%以上の精度向 上を達成し注目を集めました。以後、ディー プラーニングに関する研究が世界中で注目さ れ、画像認識だけでなく音声認識などでも優 れた性能を発揮することが示されています。

<u>ディープラーニングの特徴</u> ディープラーニングが優れている理由は、 データの特徴量を自動的に獲得して識別でき る点にあります。これまでの手法では、例え ば画像処理の場合、色に関する情報であると か、エッジ情報など人が定義した特徴量を抽 出し、それによって識別処理を行わなければ なりませんでした。しかし、ディープラーニ ングの場合、こうした特徴量に関する情報は 与えなくても自動的に獲得することが可能な のです。また、ディープラーニングには学習 するのに十分なデータ量が必要になりますが、 最近、ネットワーク環境が充実してきた関係 で、学習するのに十分なデータが用意しやす くなり、様々なデータセットもインターネッ ト上に整備されつつあります。さらに、ディ ープラーニングによる学習には多くの計算コ ストを必要としますが、画像処理装置(GPU: Graphics Processing Unit)の登場やメモリなど のハードウエアの高性能化がディープラーニ ングの躍進を支えています。

愛知県立大学 小栗 宏次